eRHIC studies

A. Fedotov, V. Ptitsyn

Motivation

- Proton/ion beam parameters in eRHIC differ from presently achieved beam parameters.
- Smaller transverse and longitudinal emittances by cooling (CEC):
 - Relatively large space charge (0.035)
 - Small bunch length (5-10 cm) and much larger peak current
- Two studies to test the feasibility of eRHIC proton beam parameters:
 - 1. Study of bunch length limits
 - 2. Interplay of space-charge and beam-beam effects

Study of bunch length limits

V.Ptitsyn, V.N.Litvinenko, A. Marusic, M. Minty, C.Montag, S. Tepikian, S.Y.Zhang

Goals:

- To identify and observe effects which may put limits on the minimum bunch length in RHIC.
- To distinguish the limitation coming from resistive wall heating and electron cloud (vacuum, pipe heating) and identify the heat load on the beam pipe from both effects.

The effects of interest

- Beam pipe heating: resistive and electron cloud
- Instabilities: longitudinal microwave; transverse EC related
- BPM cable heating

Approaching transition study in Run-9

- ~2h time spent to verify if we could approach the transition at fixed energy, using gammaT quads only:
 - Beam losses when large step of gammaT quad change was used
 - Some model problems when trying to calculate the required tune correction.
 - Considerable closed orbit change.
 - Conclusion: a dedicated ramp and tune/orbit feedbacks are needed to prevent beam losses during the experiment.

Approaching transition using gammaT quads. Run-9.

High intensity studies in Run-12

C. Montag and team

-achieved peak current = 7.5A (2.6E11 with 2.2ns rms bunch length) by injecting into 28 MHz RF with the quad-pumping in AGS.

(Peak current in eRHIC >75 A)

- -with 109 bunches injected, the measured cryo-load was consistent with expected resistive wall heating (to 10% level)
- -not obviously seen: the electron cloud and related transverse emittance growth

Plans for 2013

- Inject the proton bunches with intensities about 2-2.5e11.

 Use 28 MHz RF system with highest possible voltage and, possibly, quad
 - pumping technique in AGS. (197 MHz RF?)
- Use a slow ramp with tune and orbit feedbacks:
 - Take advantage of the new Yellow beam lattice with higher gammaT energy.
 - Initial part of the ramp: ramping the gammaT quad settings, with corresponding tune corrections.
 - Second part of the ramp: slow (~few minutes) deceleration to the transition energy
- Record cryo-temperatures, vacuum conditions, transverse and longitudinal beam sizes (emittances).
- Possible complications: increased space charge effect; BPM cable heating
- Make ramps:
 - with small number of bunches of different intensity to look at the instabilities and the space charge effects
 - with 109 bunches: to look at the pipe heating and EC effects

Interplay of space-charge and beam-beam effects

APEX studies for low-energy RHIC (with Au ions)

$$\Delta Q_{sc} >> \xi$$

APEX March 2010:

Au+Au ions: γ =10 (modest space-charge, small beam-beam)

• Several APEX and Low-Energy RHIC run May - June 2010:

Au+Au ions: γ =6.1 and γ =4.1 (large space-charge, small beam-beam)

• June 2011:

Au+Au ions: γ=10, w.p. near integer (modest space-charge, small beam-beam)

Results published in:

Proc. of HB10: THO1C03; Proc. of PAC11: THP081

Team: A. Fedotov, M. Blaskiewicz, R. Connolly, A. Drees, W. Fischer, C. Montag, V. Ptitsyn, S. Tepikian

Experimental studies in RHIC with protons:

- Mostly relevant for eRHIC parameters & luminosity

large beam-beam parameter ξ

1. May 2009:

Protons at $\gamma=25$ (large beam-beam)

2. June 2009:

Protons at γ =25 and different w.p. (large beam-beam)

3. April 2012:

Protons at γ =25 and near integer w.p. (large beam-beam)

study # 2

June 17, 2009 experiment with new working point June 2009

Choosing different working point for regime with large beam-beam.

Protons at standard injection energy (γ =25):

Finding working point where effects of beam-beam are minimized for regime ΔQ_{sc} =0.03, ξ =0.01-0.02 (this is regime of interest for eRHIC).

For small ΔQ_{sc} (~0.03), eRHIC:

Can we find better working point?

Already did similar study with Au ions, in the regime of very weak beam-beam.

14

First, attempted to set-up working point just below integer:

w.p. $(Q_x,y)=(0.98,0.97)$

- Not easy to have well-controlled machine and be able to inject high-intensities. We gave up after some time.

Decided to move above integer to $w.p.(Q_x,y)=(0.08,0.07)$

- well behaved machine
- experiment worked nicely

Result: not as good as has hoped, and as observed for similar working point but in the regime with weak beambeam (APEX with Au ions at new integer w.p.).

April 4, 2012: effect of collisions

April 4, 2012: effect of collisions

Protons @γ=25

 $\Delta p/p = 1.5 \cdot 10^{-3}$

Losses are seen in the longitudinal plane

In eRHIC:

 $\Delta p/p = 3 \cdot 10^{-4}$

Au ions

$$@\gamma = 10$$
 $\Delta p/p = 5 \cdot 10^{-4}$

No obvious losses are seen in the longitudinal plane

Run-13

Remaining question:

-What would be the beam lifetime with the momentum spread more similar to the eRHIC value?

Suggested measurements with protons:

- -Compare the beam lifetime obtained at different momentum spread (9 MHz versus 28 MHz RF system) but at the same space charge and beambeam parameters.
- -Do the measurement at (0.69,0.68) working point area; compare the beam lifetimes with exchanged Blue and Yellow working points.
- -Take advantage of machine tuning done during the Integer working point studies and do the measurement at that working point area.

Backup Slides

April 4: Protons at injection w.p.=(0.08,0.07) 22

Reduced intensity:

Injecting directly in collisions:

- lower intensity beam was kept in Yellow while fresh low intensity beam injected in Blue

